Abstract

The correlation energy in the direct random phase approximation (dRPA) can be written, among other possibilities, either in terms of the interaction strength averaged correlation density matrix, or in terms of the coupled cluster doubles amplitudes obtained in the direct ring approximation (drCCD). Although the corresponding dRPA correlation density matrix on the one hand, and the drCCD amplitude matrix on the other hand, differ significantly, they yield identical energies. Similarly, the analogous RPA and rCCD correlation energies calculated from antisymmetrized two-electron integrals are identical to each other despite very different underlying working equations. In the present communication, a direct correspondence between amplitudes and densities is established and investigated with perturbation theory arguments. Our analysis also sheds some light on the properties of recently proposed RPA/rCCD variants which use antisymmetrized integrals in part of the equations and nonantisymmetrized integrals in others.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.