Abstract

In this work, we consider MEMS devices made of mechanically coupled microbeams under electric actuation. We conduct an experimental study to identify the occurrence of veering and then investigate its dynamic response for different electric actuations. A slight change in the DC voltage bias from the veering point is observed to affect significantly the frequency response. Indeed, jump to large orbits occurred when perturbing the applied DC voltage while operating near the cyclic-fold bifurcation point. We also develop and validate a mathematical model to simulate the response of the device. The model showed similarities in the softening effect of the DC voltage bias and an added mass when matching their induced shift in the natural frequency. As such, one can discern the inherent nonlinear effects of DC voltage bias on coupled resonators and exploit them for mass sensing applications without going over the hassle of mass deposition, which requires the deployment of complex processes. We also investigate different mass detection mechanisms. We show the potential of mode localization and the significant and abrupt jumps in the deflection of the coupled microbeams due to mass perturbation to enhance the sensitivity of MEMS mass sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.