Abstract

We address Biot's equations governing the motion of an anisotropic fluid-saturated poroelastic material with certain properties. First, we investigate the uniqueness in solutions of the three-dimensional governing equations for the regular region of the poroelastic material and enumerate the conditions sufficient for the uniqueness. Next, by applying Hamilton's principle to the motion of the region, we obtain a variational principle that generates only the Biot–Newton equations and the associated natural boundary conditions. Then, by extending the variational principle for the region with an internal fixed surface of discontinuity through Legendre's transformation, we derive a six-field variational principle that operates on all the poroelastic field variables. The variational principle leads, as its Euler–Lagrange equations, to all the governing equations, including the jump conditions but the initial conditions, as a generalized version of the Hellinger–Reissner variational principle. Moreover, we consider the free vibrations of the region, and we discuss some basic properties of eigenvalues and present a variational formulation by Rayleigh's quotient. This work provides a standard tool with the features of variational principles when numerically solving the governing equations in heterogeneous media with finite element methods, treating the free vibrations and consistently deriving some one-dimensional/two-dimensional equations of the poroelastic region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.