Abstract

The electron paramagnetic resonance (EPR) parameters g and the hyperfine structure constants A of Co2+ in ZnX (X = S, Se, Te) and CdTe are studied, using the perturbation formulas of the EPR parameters for a 3d7 ion in tetrahedra based on two mechanism models. In these formulas, both the contributions from the conventional crystal-field (CF) mechanism and those from the charge-transfer (CT) mechanism are taken into account. According to the investigations, the sign of the g-shift ΔgCT from the CT mechanism is the same as ΔgCF from the CF mechanism, whereas the contributions to the A value from the CF and CT mechanisms have opposite signs. Particularly, the contributions to the EPR parameters from the CT mechanism increase rapidly with increase of the spin-orbit coupling coefficient of the ligand and the covalency effect of the systems, i. e. S2− < Se2− < Te2−.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call