Abstract
Integral models proposed to simulate positively buoyant jets are used to model jets with negative or reversing buoyancy issuing into a calm, homogeneous or density-stratified environment. On the basis of the self-similarity assumption, ‘top hat’ and Gaussian cross-sectional distributions are employed for concentration and velocity. The entrainment coefficient is considered to vary with the local Richardson number, between the asymptotic values for simple jets and plumes, estimated from earlier experiments in positively buoyant jets. Top-hat and Gaussian distribution models are employed in a wide range of experimental data on negatively buoyant jets, issuing vertically or at an angle into a calm homogeneous ambient, and on jets with reversing buoyancy, discharging into a calm, density-stratified fluid. It is found that geometrical characteristics such as the terminal (steady state) height of rise, the spreading elevation in stratified ambient and the distance to the point of impingement are considerably underestimated, resulting in lower dilution rates at the point of impingement, especially when the Gaussian formulation is applied. Reduction of the entrainment coefficient in the jet-like flow regime improves model predictions, indicating that the negative buoyancy reduces the entrainment in momentum-driven, negatively buoyant jets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.