Abstract

Singular enrichment functions are broadly used in Generalized or Extended Finite Element Methods (GFEM/XFEM) for linear elastic fracture mechanics problems. These functions are used at finite element nodes within an enrichment zone around the crack tip/front in 2- and 3-D problems, respectively. Small zones lead to suboptimal convergence rate of the method while large ones lead to ill-conditioning of the system of equations and to a large number of degrees of freedom. This paper presents an a priori estimate for the minimum size of the enrichment zone required for optimal convergence rate of the GFEM/XFEM. The estimate shows that the minimum size of the enrichment zone for optimal convergence rate depends on the element size and polynomial order of the GFEM/XFEM shape functions. Detailed numerical verification of these findings is also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.