Abstract
Abstract A general framework for the numerical approximation of evolution problems is presented that allows to preserve an underlying dissipative Hamiltonian or gradient structure exactly. The approach relies on rewriting the evolution problem in a particular form that complies with the underlying geometric structure. The Galerkin approximation of a corresponding variational formulation in space then automatically preserves this structure which allows to deduce important properties for appropriate discretization schemes including projection based model order reduction. We further show that the underlying structure is preserved also under time discretization by a Petrov–Galerkin approach. The presented framework is rather general and allows the numerical approximation of a wide range of applications, including nonlinear partial differential equations and port-Hamiltonian systems. Some examples will be discussed for illustration of our theoretical results, and connections to other discretization approaches will be highlighted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.