Abstract
The binormal flow is a model for the dynamics of a vortex filament in a 3-D inviscid incompressible fluid. The flow is also related with the classical continuous Heisenberg model in ferromagnetism, and the 1-D cubic Schrödinger equation. We consider a class of solutions at the critical level of regularity that generate singularities in finite time. One of our main results is to prove the existence of a natural energy associated to these solutions. This energy remains constant except at the time of the formation of the singularity when it has a jump discontinuity. When interpreting this conservation law in the framework of fluid mechanics, it involves the amplitude of the Fourier modes of the variation of the direction of the vorticity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.