Abstract

The energy of a unit vector field on a Riemannian manifold M is defined to be the energy of the mapping M → T1M, where the unit tangent bundle T1M is equipped with the restriction of the Sasaki metric. The constrained variational problem is studied, where variations are confined to unit vector fields, and the first and second variational formulas are derived. The Hopf vector fields on odd-dimensional spheres are shown to be critical points, which are unstable for M=S5,S7,..., and an estimate on the index is obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.