Abstract

This paper presents an in-depth analysis on the energy efficiency of Luby Transform (LT) codes with Frequency Shift Keying (FSK) modulation in a Wireless Sensor Network (WSN) over Rayleigh fading channels with pathloss. We describe a proactive system model according to a flexible duty-cycling mechanism utilized in practical sensor apparatus. The present analysis is based on realistic parameters including the effect of channel bandwidth used in the IEEE 802.15.4 standard, active mode duration and computation energy. A comprehensive analysis, supported by some simulation studies on the probability mass function of the LT code rate and coding gain, shows that among uncoded FSK and various classical channel coding schemes, the optimized LT coded FSK is the most energy-efficient scheme for distance d greater than the pre-determined threshold level d_T , where the optimization is performed over coding and modulation parameters. In addition, although the optimized uncoded FSK outperforms coded schemes for d < d_T , the energy gap between LT coded and uncoded FSK is negligible for d < d_T compared to the other coded schemes. These results come from the flexibility of the LT code to adjust its rate to suit instantaneous channel conditions, and suggest that LT codes are beneficial in practical low-power WSNs with dynamic position sensor nodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call