Abstract
There are several definitions of energy density in quantum mechanics. These yield expressions that differ locally, but all satisfy a continuity equation and integrate to the value of the expected energy of the system under consideration. Thus, the question of whether there are physical grounds to choose one definition over another arises naturally. In this work, we propose a way to probe a system by varying the size of a well containing a quantum particle. We show that the mean work done by moving the wall is closely related to one of the definitions for energy density. Specifically, the appropriate energy density, evaluated at the wall corresponds to the force exerted by the particle locally, against which the work is done. We show that this identification extends to two and three dimensional systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.