Abstract
In this study the energy absorption response and load carrying capability of Bombyx mori (B. mori) natural silk fibre/Epoxy composite cylindrical tubes under an axial quasi-static compression was investigated. The composite tubes were prepared using mandrel assisted hand lay-up technique. The tube was fabricated using 24 layers of B. mori natural silk fibre, fully wetted with epoxy matrix. The tube was then cut into varied lengths of 50 mm, 80 mm, and 120 mm, respectively. Three specimens were tested in each category. The experimental results were analysed by measuring maximum peak load (Pmax), specific absorbed energy (SAE), and total energy absorption (TE) as a function of tube length. Findings show results being varied according to tube length in unpredictable manners. Failure fragmentation of the tubes was analysed from photographs obtained during the test using high resolution camera, which showed micro cracks induced by compression load as the predominant source of failure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.