Abstract
We present an unprecedented comparison of ∼0.52–55 keV energetic neutral atom (ENA) heliosheath measurements, remotely sensed by the Interstellar Boundary Explorer (IBEX) mission and the Ion and Neutral Camera (INCA) on the Cassini mission, with modeled ENAs inferred from interstellar pickup protons that have been accelerated at the termination shock, using hybrid simulations, to assess the pickup ion energetics within the heliosheath. This is the first study to use hybrid simulations that are able to accurately model the acceleration of ions to tens of keV energies, which is essential in order to model ENA fluxes in the heliosheath, covering the full energy range observed by IBEX and CASSINI/INCA. The observed ENA intensities are an average value over the time period from 2009 to the end of 2012, along the Voyager 2 (V2) trajectory. The hybrid simulations upstream of the termination shock, where V2 crossed, are constrained by observations. We report an energy-dependent discrepancy between observed and simulated ENA fluxes, with the observed ENA fluxes being persistently higher than the simulated ones. Our analysis reveals that the termination shock may not accelerate pickup ions to sufficient energies to account for the observed ENA fluxes. We, thus, suggest that the further acceleration of these pickup ions is most likely occurring within the heliosheath, via additional physical processes like turbulence or magnetic reconnection. However, the redistribution of energy inside the heliosheath remains an open question.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.