Abstract
At low temperatures (∼10 K), hydrogen atoms can diffuse quickly on grain ice mantles and frequently encounter hydrogen molecules, which cover a notable fraction of grain surface. The desorption energy of H atoms on H2 substrates is much less than that on water ice. The H atom encounter desorption mechanism is adopted to study the enhanced desorption of H atoms on H2 substrates. Using a small reaction network, we show that the steady-state surface H abundances predicted by the rate equation model that includes H atom encounter desorption agree reasonably well with the results from the more rigorous microscopic Monte Carlo method. For a full gas-grain model, H atom encounter desorption can reduce surface H abundances. Therefore, if a model adopts the encounter desorption of H atoms, it becomes more difficult for hydrogenation products such as methanol to form, but it is easier for C, O and N atoms to bond with each other on grain surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.