Abstract

Energy efficiency is one of the top priorities for future cellular networks, which could be accomplished by implementing cooperative mechanisms. In this paper, we propose three evolved node B eNB-centric energy-saving cooperation techniques for long-term evolution LTE systems. These techniques, named as intra-network, inter-network, and joint cooperation, involve traffic-aware intelligent cooperation among eNBs belonging to the same or different networks. Our proposed techniques dynamically reconfigure LTE access networks in real time utilizing less number of active eNBs and thus, achieve energy savings. In addition, these techniques are distributed and self-organizing in nature. Analytical models for evaluating switching dynamics of eNBs under these cooperation mechanisms are also formulated. We thoroughly investigate the proposed system under different numbers of cooperating networks, traffic scenarios, eNB power profiles, and their switching thresholds. Optimal energy savings while maintaining quality of service is also evaluated. Results indicate a significant reduction in network energy consumption. System performance in terms of network capacity utilization, switching statistics, additional transmit power, and eNB sleeping patterns is also investigated. Finally, a comprehensive comparison with other works is provided for further validation. Copyright © 2013 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.