Abstract

In this paper we show that the empirical eigenvalue distribution of any sample covariance matrix generated by independent samples of a stationary regular sequence has a limiting distribution depending only on the spectral density of the sequence. We characterize this limit in terms of Stieltjes transform via a certain simple equation. No rate of convergence to zero of the covariances is imposed, so, the underlying process can exhibit long memory. If the stationary sequence has trivial left sigma field the result holds without any other additional assumptions. This is always true if the entries are functions of i.i.d.As a method of proof, we study the empirical eigenvalue distribution for a symmetric matrix with independent rows below the diagonal; the entries satisfy a Lindeberg-type condition along with mixingale-type conditions without rates. In this nonstationary setting we point out a property of universality, meaning that, for large matrix size, the empirical eigenvalue distribution depends only on the covariance structure of the sequence and is independent on the distribution leading to it. These results have interest in themselves, allowing to study symmetric random matrices generated by random processes with both short and long memory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.