Abstract
We consider a stationary linear AR(p) model with observations subject to gross errors (outliers). The distribution of outliers is unknown and arbitrary, their intensity is γn−1/2 with an unknown γ, n is the sample size. The autoregression parameters are unknown, they are estimated by any estimator which is n1/2-consistent uniformly in γ ≤ Γ < ∞. Using the residuals from the estimated autoregression, we construct a kind of empirical distribution function (e.d.f.), which is a counterpart of the (inaccessible) e.d.f. of the autoregression innovations. We obtain a stochastic expansion of this e.d.f., which enables us to construct a test of Pearson’s chi-square type for testing hypotheses about the distribution of innovations. We establish qualitative robustness of this test in terms of uniform equicontinuity of the limiting level with respect to γ in a neighborhood of γ = 0.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.