Abstract

The problem of embedding of linear spaces in finite projective planes has been examined by several authors ([1], [2], [3], [4], [5], [6]). In particular, it has been proved in [1] that a linear space which is the complement of a projective or affine subplane of order m is embeddable in a unique way in a projective plane of order n. In this article, we give a generalization of this result by embedding linear spaces in a finite projective plane of order n, which are complements of certain regularA-affine linear spaces with respect to a finite projective plane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.