Abstract

Glucagon, the main hormone responsible for increasing blood glucose levels, is secreted by pancreatic alphacells in a Ca2+ dependent process associated to membrane potential oscillations developed by the dynamic operation of K+, Na+ and Ca2+ channels. The mechanisms behind membrane potential and Ca2+ oscillations in alpha-cells are still under debate, and some new research works have used alpha-cell models to describe electrical activity. In this paper we studied the dynamics of electrical activity of three alpha-cell models using the Lead Potential Analysis method and Bifurcation Diagrams. Our aim is to highlight the differences in their dynamic behavior and therefore, in their response to glucose. Both issues are relevant to understand the stimulus-secretion coupling in alpha-cells and then, the mechanisms behind their dysregulation in Type 2 Diabetes.Clinical Relevance - A reliable description of the electrophysiological mechanisms in pancreatic alpha-cells is key to understand and treat the dysregulation of these cells in patients with Type 2 Diabetes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call