Abstract

Literature interpretations of the electrophoretic mobility of spherical polyelectrolytes are revisited using the capillary-electrophoresis data of Duval et al. (2006) for the extracellular polysaccharide succinoglycan as an example. Subtle changes in the polyelectrolyte mobility have recently been attributed to new electrokinetic theories that feature multi-component electrolytes, charge regulation, and the so-called polarization and relaxation phenomena. However, these calculations exhibit several unusual trends that have yet to be explained, and so the conclusions drawn from them are controversial. Here, independent computations strengthen conclusions drawn from the original model of Duval et al., i.e., the discrepancies between experiments and all the presently available electrokinetic theories reflect changes in the conformation of succinoglycan arising from changes in the electrolyte pH and ionic strength.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.