Abstract

DFT calculations show that the optimal metal valence electron (MVE) count of omnicapped cubic rhodium clusters containing more than eight terminal ligands, is 114. For such a count, a closed-shell configuration is computed with a substantial HOMO-LUMO gap. The presence of more than eight terminal ligands in the clusters favors highly distorted cubic architectures with capping ligands asymmetrically bound to the distorted metallic square faces. Removal of terminal ligands leads to the replacement of bonding M–L electron pairs by nonbonding electron pairs localized on the metal atoms, giving rise to unchanged MVE count.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.