Abstract

The electronic structure of Ag chalcogenides in the α phase, which exhibit an interesting, electronic semiconducting behaviour as well as the fast ion transport, is discussed on the basis of an energy band structure calculation. As a simplest way of simulating the effect of the Ag ions on the electronic states, some hypothetical crystalline compounds are constructed such as the perovskite, the sodium chloride and the flourite structures. The absolute magnitude of the calculated conduction electron effective mass is quite small irrespectively of the structures, about 10% of the free-electron mass, in semiquantitative agreement with experiments. A deviation from an effective mass approximation near the conduction band bottom is found to be appreciable, and to explain reasonably well experimental results. An origin of these features of the conduction band is a rather strong hybridization of the Ag 5s band and the chalcogen s band. The calculation also shows that the hybridization of the Ag 4d band and the chalcogen p band can affect the absolute magnitude of the hole effective mass appreciably, and that the energy band gap depends sensitively on these s-s and d-p hybridization effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.