Abstract

The extent and nature of cyclic electron delocalization in free and coordinated cyclopropenylidene carbenes has been analyzed by combined experimental and theoretical charge-density studies. The significant asymmetry of the C–C bond lengths in substituted cyclopropenylidene carbenes was identified as cooperative effect which depends on contributions of both σ- and π-bonding. We show that analyses of (i) the topology of the Laplacian of the electron density distribution and (ii) the out-of-plane atomic quadrupole moments – the charge-density analogues of p π occupation – allow to distinguish between the influence of σ- and π-electrons on cyclic electron delocalization. These studies hint for pronounced electron localization in the carbene lone pair region which dominates the electronic structure of free cyclopropenylidene carbenes and hinders the establishment of true aromaticity. We further investigated the electron donating/withdrawing ability of cyclopropenylidene ligands relative to N-heterocyclic carbenes. The experimental benchmark systems LCr(CO) 5 (L = 2,3-diphenylcyclopropenylidene and 1,2-dimethylimidazol-2-ylidene) show that the cyclopropenylidene ligand clearly displays the higher π-acceptor capability relative to N-heterocyclic carbenes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.