Abstract

We address the problem of inertial property of matter through analysis of the motion of an extended charged particle. Our approach is based on the continuity equation for momentum (Newton’s second law) taking due account of the vector potential and its convective derivative. We obtain a development in terms of retarded potentials allowing an intuitive physical interpretation of its main terms. The inertial property of matter is then discussed in terms of a kind of induction law related to the extended charged particle’s own vector potential. Moreover, it is obtained a force term that represents a drag force acting on the charged particle when in motion relatively to its own vector potential field lines. The time rate of variation of the particle’s vector potential leads to the acceleration inertia reaction force, equivalent to the Schott term responsible for the source of the radiation field. We also show that the velocity dependent term of the particle’s vector potential is connected with the relativistic increase of mass with velocity and generates a longitudinal stress force that is the source of electric field lines deformation. In the framework of classical electrodynamics, we have shown that the electron mass has possibly a complete electromagnetic origin and the obtained covariant equation solves the “4/3 mass paradox” for a spherical charge distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call