Abstract

SummaryThe effects to be expected from the interaction of possible electric currents at depth with bodies of basaltic magma have been investigated experimentally. Trough-shaped molten specimens were produced in the surface of basalt blocks by heating from above ; the melts were electrolysed and the products analysed chemically.Si, Al, Ti, P, Fe2+, and probably Fe3+are concentrated towards the anode, apparently in the form of drifting lattice remnants; oxygen gas is liberated. Na, K, Ca, Mn, and Mg ions concentrate towards the cathode.Relatively to basalt, the cathodic product is an alkaline and femic rock with normative nepheline and a more acid plagioclase. The anodic rock is distinctly calc-alkaline and salic, with normative quartz and a plagioclase that is more basic. The precise ‘rock-type’ developed depends on the amount of electricity passed, but the trends are distinct. In that increasing basicity and alkalinity (cathodic rocks) are accompanied by both increasing Na/K and Mg/(Fe2++ Fe3+) ratios (which ratios decrease with decreasing basicity and alkalinity) the electrolytic series developed from a basalt magma appears to have few counterparts among natural rocks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.