Abstract

Properties of Pu–Al alloys were investigated in connection with development of pyrochemical methods for reprocessing of spent nuclear fuel. Electroseparation techniques in molten LiCl–KCl are being developed in ITU to group-selectively recover actinides from the mixture with fission products. In the process, actinides are electrochemically reduced on solid aluminium cathodes, forming solid actinide–aluminium alloys. This article is focused on electro-chemical characterisation of Pu–Al alloys in molten LiCl–KCl, on electrodeposition of Pu on solid Al electrodes and on determination of chemical composition and structure of the formed alloys. Cyclic voltammetry and chronopotentiometry were used to study Pu–Al alloys in the temperature range 400–550 °C. Pu is reduced to metal in one reduction step Pu 3+/Pu 0 on an inert W electrode. On a reactive Al electrode, the reduction of Pu 3+ to Pu 0 occurs at a more positive potential due to formation of Pu–Al alloys. The open circuit potential technique was used to identify the alloys formed. Stable deposits were obtained by potentiostatic electrolyses of LiCl–KCl–PuCl 3 melts on Al plates. XRD and SEM–EDX analyses were used to characterise the alloys, which were composed mainly of PuAl 4 with some PuAl 3. In addition, the preparation of PuCl 3 containing salt by carbochlorination of PuO 2 is described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.