Abstract

Poly(azomethine sulfone)s were synthesized by reacting 4,4′-sulfonyl bis(4-chlorophenyl) with 2,2-bis(4-hydroxyphenyl)propane and azomethine bisphenol in different molar ratios. Thin films were deposited from solution onto glass substrates. Study of the temperature dependences of the electrical conductivity, σ, and Seebeck coefficient, S, were performed in the temperature range 300 K–500 K. Thermal activation energies of electrical conduction, Ea , calculated from these dependences, ranged between 1.50 eV and 1.85 eV. The values of Ea were smaller for polymers with extended conjugation systems. The possibility to use the polymers in thermistor technology is discussed. The aspect of the temperature dependences of σ and S shows that a model based on the energy band-gap representation can be successfully used for explaining the electronic transport mechanism in the higher temperature range. In the lower temperature range, the mechanism of the electrical conduction is discussed in terms of the Mott variable range hopping conduction. The values of some optical parameters (absorption coefficient, optical band gap, etc.) were determined from transmission spectra.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call