Abstract

Dispersal is known to play a crucial role in the formation of species' ranges. Recent studies demonstrate that dispersiveness increases rapidly during the range expansion of species due to a fitness increase for dispersers at the expanding front. R. D. Holt concluded, however, that emigration should decline after the period of invasion and hence predicted some range contraction following the initial expansion phase. In this study, we evaluate this hypothesis using a spatially explicit individual-based model of populations distributed along environmental gradients. In our experiments we allow the species to spread along a gradient of declining conditions. Results show that range contraction did emerge in a gradient of dispersal mortality, caused by the rapid increase in emigration probability during invasion and selection disfavoring dispersal, once a stable range is formed. However, gradients in growth rate, local extinction rate, and patch capacity did not lead to a noticeable contraction of the range. We conclude, that the phenomenon of range contraction may emerge, but only under conditions that select for a reduction in dispersal at the range edge in comparison to the core region once the expansion period is over.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.