Abstract

A new constitutive law is introduced to quantify the macroscopic effect of grain boundary dislocation emission on the behavior of pure face center cubic nanocrystalline materials. It is postulated that an emitted dislocation ends its trajectory in the grain boundary opposite to the source causing mass transfer. Dislocation emission by grain boundary ledges, considered here as the primary grain-boundary sources, is modeled as a thermally activated mechanism and the penetration of an emitted dislocation is assimilated as a soft collision. The macroscopic behavior of the material is retrieved via the use of a secant self-consistent scheme. The material is seen as a two-phase composite where the inclusion phase represents grain cores, their behavior is driven by dislocation glide, and where the matrix phase, governed by the newly introduced dislocation emission and penetration mechanism, represents both grain boundaries and triple junctions. The long range stress field arising from the presence of grain boundaries is taken into account in the critical glide resistance stress at 0 K in the inclusion phase. The model is applied to polycrystal copper and results in pure tension and creep are compared to experiments. Good agreements between the experimental measurements and the model predictions are observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.