Abstract

In the present study, we obtain Young's modulus and yield strength of 〈100〉 Au nanowire in the range of diameters 1-30 nm by tension and bending tests using molecular dynamics simulations. Double clamped Au nanowire is bended applying a point load at its middle span using cylindrical indenter by the atomistic approach. The superiority of the present bending technique is highlighted by analyzing the distribution of Von Misses stress of the present bending Au nanowire by 3D finite element modeling. First, Young's modulus and yield strength of Au nanowires are determined using classical theory of continuum mechanics. Then the obtained Young's modulus and yield strength of Au nanowires are corrected using 3D finite element modeling based on inverse technique [Deb Nath et al. Appl. Phys. A 103(2), 493 (2011) and Tohmyoh et al. Appl. Phys. A 103(2), 285 (2011)]. Effects of anisotropy on the tension and bending stiffness, tension and bending strength of Au nanowires are also discussed with graphs. Effects of temperature on the tension and bending stiffness, tension and bending strength of Au nanowires are discussed. Effects of vertical displacement of the indenter on the mid span of double clamped Au nanowires on the bending stiffness and strength during molecular dynamics simulation are discussed. Besides, the obtained Young's modulus and yield strength of Au nanowires by Wu et al. [Nature Mater. 4, 525 (2005)] in the range of diameters 40 to 200 nm using the theory of classical continuum mechanics are corrected using the 3D finite element modeling based on inverse technique [Deb Nath et al. Appl. Phys. A 103(2), 493 (2011) and Tohmyoh et al. Appl. Phys. A 103(2), 285 (2011)].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.