Abstract

This article is a continuation of the article [F. Zhang, Geršgorin type theorems for quaternionic matrices, Linear Algebra Appl. 424 (2007), pp. 139–153] on the study of the eigenvalues of quaternion matrices. Profound differences in the eigenvalue problems for complex and quaternion matrices are discussed. We show that Brauer's theorem for the inclusion of the eigenvalues of complex matrices cannot be extended to the right eigenvalues of quaternion matrices. We also provide necessary and sufficient conditions for a complex square matrix to have infinitely many left eigenvalues, and analyse the roots of the characteristic polynomials for 2 × 2 matrices. We establish a characterisation for the set of left eigenvalues to intersect or be part of the boundary of the quaternion balls of Geršgorin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.