Abstract

The eigenvalue control strategy, which utilizes an adaptive power system stabilizer, is presented for the decentralized control of damping and frequency of electromechanical oscillations in power systems. The control procedure includes the complete identification of the decoupled subsystem model in real-time from local measurements only and the assignment of its estimated electromechanical eigenvalue by the change of stabilizer parameters. The robustness and efficiency of the proposed adaptive controller to enhance overall system stability are illustrated by several examples, including the three-machine power system model. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.