Abstract

A potassium double tungstate layer with the composition KY<sub>0.40</sub>Gd<sub>0.29</sub>Lu<sub>0.23</sub>Tm<sub>0.08</sub>(WO<sub>4</sub>)<sub>2</sub> was grown onto a pure KY(WO<sub>4</sub>)<sub>2</sub> substrate by liquid-phase epitaxy, microstructured by standard lithography and Ar-ion etching, and overgrown by a pure KY(WO<sub>4</sub>)<sub>2</sub> layer. The end-facets were polished. Laser experiments were performed on these buried, ridge-type channel waveguides in a resonator with one butt-coupled mirror and Fresnel reflection from the other end-facet, resulting in a high output-coupling degree of 89%, compared to intrinsic round-trip losses of only 2%. By pumping with a Ti:Sapphire laser at 794 nm, 1.6 W of output power at 1.84 &mu;m with a maximum slope efficiency of ~80% was obtained. To the best of our knowledge, this result represents the most efficient 2-&mu;m channel waveguide laser to date. We determined the optimum Tm<sup>3+</sup> concentration in double tungstate channel waveguides to be at least 8at.% for efficient lasing. The theoretical limit of the slope efficiency depends on the Stokes efficiency which here is 43.2%, the outcoupling efficiency which here is 99%, and the pump quantum efficiency. The pump quantum efficiency of a 2-&mu;m Tm<sup>3+</sup> laser pumped around 800 nm hinges on the efficiency of its cross-relaxation process. By fitting the macroscopic cross-relaxation parameter which linearly depends on the Tm<sup>3+</sup> concentration to concentration-dependent luminescence- decay data, calculating the overall decay rate of the pump level, and deriving the concentration-dependent pump quantum efficiency, we obtain a theoretical limit for the slope efficiency of 83% for the chosen Tm<sup>3+</sup> concentration. The experimental slope efficiency of ~80% closely approaches this limit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call