Abstract

AbstractWe study the efficiency of the proportional allocation mechanism, that is widely used to allocate divisible resources. Each agent submits a bid for each divisible resource and receives a fraction proportional to her bids. We quantify the inefficiency of Nash equilibria by studying the Price of Anarchy (PoA) of the induced game under complete and incomplete information. When agents’ valuations are concave, we show that the Bayesian Nash equilibria can be arbitrarily inefficient, in contrast to the well-known 4 / 3 bound for pure equilibria [12]. Next, we upper bound the PoA over Bayesian equilibria by 2 when agents’ valuations are subadditive, generalizing and strengthening previous bounds on lattice submodular valuations. Furthermore, we show that this bound is tight and cannot be improved by any simple mechanism. Then we switch to settings with budget constraints, and we show an improved upper bound on the PoA over coarse-correlated equilibria. Finally, we prove that the PoA is exactly 2 for pure equilibria in the polyhedral environment.KeywordsNash EquilibriumStrategy ProfileValuation FunctionPrice AuctionBayesian Nash EquilibriumThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call