Abstract

Far-field wireless power transfer (WPT) is a promising technique to resolve the painstaking power-charging problem inherent in various wireless terminals. This paper investigates the power transfer efficiency of the WPT segment in future communication systems in support of simultaneous power and data transfer, by means of analytically computing the time-average output direct current (DC) power at user equipments (UEs). In order to investigate the effect of channel variety among UEs on the average output DC power, different policies for the scheduling of the power transfer among the users are implemented and compared in two scenarios: homogeneous, whereby users are symmetric and experience similar path loss, and heterogeneous, whereby users are asymmetric and exhibit different path losses. Specifically, if opportunistic scheduling is performed among $N$ symmetric/asymmetric UEs, the power scaling laws are attained by using extreme value theory, and reveal that the gain in power transfer efficiency is $\ln{N}$ if UEs are symmetric whereas the gain is $N$ if UEs are asymmetric, compared with that of conventional round-robin scheduling. Thus, the channel variety among UEs inherent to the wireless environment can be exploited by opportunistic scheduling to significantly improve the power transfer efficiency when designing future wireless communication systems in support of simultaneous power and data transfer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call