Abstract

This paper discusses how conditional heteroskedasticity models can be estimated efficiently without imposing strong distributional assumptions such as normality. Using the generalized method of moments (GMM) principle, we show that for a class of models with a symmetric conditional distribution, the GMM estimates obtained from the joint estimating equations corresponding to the conditional mean and variance of the model are efficient when the instruments are chosen optimally. A simple ARCH(1) model is used to illustrate the feasibility of the proposed estimation procedure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.