Abstract

The response equations as occurring in the Hartree-Fock, multiconfigurational self-consistent field, and Kohn-Sham density functional theory have identical matrix structures. The algorithms that are used for solving these equations are discussed, and new algorithms are proposed where trial vectors are split into symmetric and antisymmetric components. Numerical examples are given to compare the performance of the algorithms. The calculations show that the standard response equation for frequencies smaller than the highest occupied molecular orbital-lowest unoccupied molecular orbital gap is best solved using the preconditioned conjugate gradient or conjugate residual algorithms where trial vectors are split into symmetric and antisymmetric components. For larger frequencies in the standard response equation as well as in the damped response equation in general, the preconditioned iterative subspace approach with symmetrized trial vectors should be used. For the response eigenvalue equation, the Davidson algorithm with either paired or symmetrized trial vectors constitutes equally good options.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call