Abstract
The response equations as occurring in the Hartree-Fock, multiconfigurational self-consistent field, and Kohn-Sham density functional theory have identical matrix structures. The algorithms that are used for solving these equations are discussed, and new algorithms are proposed where trial vectors are split into symmetric and antisymmetric components. Numerical examples are given to compare the performance of the algorithms. The calculations show that the standard response equation for frequencies smaller than the highest occupied molecular orbital-lowest unoccupied molecular orbital gap is best solved using the preconditioned conjugate gradient or conjugate residual algorithms where trial vectors are split into symmetric and antisymmetric components. For larger frequencies in the standard response equation as well as in the damped response equation in general, the preconditioned iterative subspace approach with symmetrized trial vectors should be used. For the response eigenvalue equation, the Davidson algorithm with either paired or symmetrized trial vectors constitutes equally good options.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.