Abstract

Through-silicon-vias (TSVs) can potentially be used to implement inductors in 3-D integrated systems for minimal footprint and large inductance. However, different from conventional 2-D spiral inductors, TSV inductors are fully buried in the lossy substrate, thus suffering from low quality factors. In this paper, we systematically examine how various process and design parameters affect their performance. A few interesting phenomena that are unique to TSV inductors are observed. We then propose a novel shield mechanism utilizing the microchannel, a technique conventionally used for heat removal, to reduce the substrate loss. The technique increases the quality factor and inductance of the TSV inductor by up to 21× and 17×, respectively. Finally, since full-wave simulations of 3-D structures are time-consuming, we develop a set of compressed sensing-based design strategies for microchannel-shielded TSV inductors, which only requires a minimal number of simulations. It enables us to implement microchannel-shielded TSV inductors of up to 5.44× reduced area compared with spiral inductors of the same design specs (quality factor, inductance, and frequency). To the best of our knowledge, this is the very first in-depth study on TSV inductors to make them practical for high-frequency applications. We hope our study shall point out a new and exciting research direction for 3-D integrated circuit designers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.