Abstract

Perturbation solutions are presented to the Reynolds and the Stokes equations for a two-dimensional slider bearing with homogeneous surface roughness. In the Reynolds equation the surface roughness has a general two-dimensional form, and in the Stokes equation the surface roughness is parallel to the flow direction. For the parallel surface roughness, if the surface corrugations on two bearing plates are uncorrelated then an error of order 10% is made when using the Reynolds equation to correct for the surface roughness provided that λh ≼ 0.5. Here λ is a characteristic frequency of the corrugation and h is the mean film thickness. Furthermore, if λh ≽ 1.91 then the Stokes solution demands a positive load enhancement, whereas the Reynolds equation predicts a negative load enhancement that depends on λ through terms of order O ( h / L ), where 2 L is the bearing length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.