Abstract

In precise point positioning (PPP), the ionospheric delay is corrected in a first-order approximation from GPS dual-frequency observations, which should eliminate almost completely the ionosphere as a source of error. However, sudden plasma density variations can adversely affect the GPS signal, degrading accuracy and reliability of positioning techniques. The occurrence of plasma density irregularities is frequent at equatorial latitudes and is reflected in large total electron content (TEC) variations. We study the relation between large changes in the rate of TEC (ROT) and positioning errors in single-epoch PPP. At equatorial latitudes and during post-sunset hours, the estimated altitudes contain errors of several meters for a single-epoch position determination, and latitude and longitude estimates are also degraded. These results have been corroborated by the online CSRS-PPP (NRCan) program. Moreover, abrupt changes in the satellite geometry have been discarded as possible cause of such errors, suggesting an apparent relation between the occurrence of large ROT and degraded position estimates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.