Abstract

AbstractThe dynamics of symmetric instability and two-dimensional inertia–gravity waves in a baroclinic geostrophic flow undergoing frontogenesis is analysed. A frontogenetic strain associated with a balanced deformation field drives an ageostrophic circulation and temporal variations in the basic state that significantly affect the properties of perturbations to the background flow. For stable stratification, perturbations to the basic state result in symmetric instability or inertia–gravity waves, depending on the sign of the Ertel potential vorticity and the magnitude of the Richardson number of the geostrophic flow. The kinetic energy (KE) of both types of motion is suppressed by frontogenetic strain due to the vertical shear in the ageostrophic circulation. This is because the perturbation streamlines tilt with the ageostrophic shear causing the disturbances to lose KE via shear production. The effect can completely dampen symmetric instability for sufficiently strong strain even though the source of KE for the instability (the vertical shear in the geostrophic flow) increases with time. Inertia–gravity waves in a baroclinic flow undergoing frontogenesis simultaneously lose KE and extract KE from the deformation field as they decay. This is because the horizontal velocity of the waves becomes rectilinear, resulting in a Reynolds stress that draws energy from the balanced flow. The process is most effective for waves of low frequency and for a geostrophic flow with low Richardson number. However, even in a background flow that is initially strongly stratified, frontogenesis leads to an exponentially fast reduction in the Richardson number, facilitating a rapid energy extraction by the waves. The KE transferred from the deformation field is ultimately lost to the unbalanced ageostrophic circulation through shear production, hence the inertia–gravity waves play a catalytic role in loss of balance. Given the large amount of KE in low-frequency inertia–gravity waves and the ubiquitous combination of strain and baroclinic geostrophic currents in the ocean, it is estimated that this mechanism could play a significant role in the removal of KE from both the internal wave and mesoscale eddy fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call