Abstract

The combined effects of viscous dissipation and Joule heating on steady magnetohydrodynamics (MHD) flow of an electrically conducting viscous incompressible non-Newtonian Bingham fluid over a porous rotating disk in the presence of Hall and ion-slip currents is studied. An external uniform magnetic field is applied in the z-direction and the fluid is subjected to uniform suction. Numerical solutions are obtained for the governing momentum and energy equations. Results for the details of the velocity as well as temperature are shown graphically and the numerical values of the skin friction and the rate of heat transfer are entered in tables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.