Abstract

This paper analyzes the effective capacity (EC) of delay constrained machine type communication (MTC) networks operating in the finite blocklength (FB) regime. First, we derive a closed-form mathematical approximation for the EC in Rayleigh block fading channels. We characterize the optimum error probability to maximize the concave EC function and study the effect of SINR variations for different delay constraints. Our analysis reveals that SINR variations have less impact on EC for strict delay constrained networks. We present an exemplary scenario for massive MTC access to analyze the interference effect proposing three methods to restore the EC for a certain node which are power control, graceful degradation of delay constraint and joint compensation. Joint compensation combines both power control and graceful degradation of delay constraint, where we perform maximization of an objective function whose parameters are determined according to delay and SINR priorities. Our results show that networks with stringent delay constraints favor power controlled compensation and compensation is generally performed at higher costs for shorter packets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.