Abstract

We present measured characteristics of the artificial ionospheric radio emission (AIRE), which were obtained experimentally using additional heating of the ionospheric F-region by O-polarized waves. It is shown that the observed enhancement of intensity of the broad upshifted maximum (BUM) of the AIRE can result from the influence of electrons accelerated in the plasma: esonance region on its generation. An empirical model of the phenomenon observed is developed. It is concluded from experimental results that the BUM has a complex structure and only one of its components produces the above emission enhancement. We show the possibility of using the AIRE in additional heating of ionospheric plasma for diagnostics of artificial ionospheric turbulence and investigation of the features of perturbation propagation along the geomagnetic field lines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.