Abstract

Aqueous phase hydrogenative rearrangement of furfural (FAL) to cyclopentanone (CPO) via furfuryl alcohol (FOL) has been studied over Pd catalysts supported on H–ZSM–5 zeolites. Pd states, zeolite properties and reaction condition parameters were optimized, affording 98% selectivity and 120 h−1 specific reaction rate over 2% Pd/H–ZSM–5(25) catalyst at 160 °C and 3 MPa H2. For hydrogenation of FAL–to–FOL, the activity was related to the Si/Al ratio and acid property of zeolite supports. For hydrogenative rearrangement of FOL–to–CPO, pure H–ZSM–5 zeolite could catalyze single–step conversion with relatively low reaction rate, whereas the presence of Pd sites could achieve multi–step transformation with remarkably increased rate, highlighting Pd–zeolite acid sites synergy. Proton and furanylmethoxy–relevant intermediates were captured with spin trapping electron paramagnetic resonance experiments, and 4–hydroxy–2–cyclopentenone and 2–cyclopentenone were also identified as key intermediates in tandem reaction pathway to produce CPO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.