Abstract

(1) Background: Vibrotactile stimulation has been studied for tremor, but there is little evidence for Essential Tremor (ET). (2) Methods: This research employed a dataset from a previous study, with data collected from 18 individuals subjected to four vibratory stimuli. To characterise tremor changes before, during, and after stimuli, time and frequency domain features were estimated from the signals. Correlation and regression analyses verified the relationship between features and clinical tremor scores. (3) Results: Individuals responded differently to vibrotactile stimulation. The 250 Hz stimulus was the only one that reduced tremor amplitude after stimulation. Compared to the baseline, the 250 Hz and random frequency stimulation reduced tremor peak power. The clinical scores and amplitude-based features were highly correlated, yielding accurate regression models (mean squared error of 0.09). (4) Conclusions: The stimulation frequency of 250 Hz has the greatest potential to reduce tremors in ET. The accurate regression model and high correlation between estimated features and clinical scales suggest that prediction models can automatically evaluate and control stimulus-induced tremor. A limitation of this research is the relatively reduced sample size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.