Abstract
The effect of two subgrid drag closures on the flow of air and Geldart group A particles is presented in this study. A subgrid drag model based on fitting simulation data obtained from finely resolved simulations and a drag model based on the energy minimization approach are both used to solve a gas−solids flow in the riser section of a circulating fluidized bed. The numerical results using a coarse computational grid obtained with these subgrid models are compared with those using a standard drag model as well as experimental data obtained in a pilot-scale riser. Numerical predictions using both subgrid models showed higher solids hold-up in the riser indicated by the radial solids density and axial pressure drop profiles in the 2D and 3D system geometries considered in this study. These subgrid models are demonstrated to be both needed and useful as large-scale numerical simulations commonly use coarse computational grids that are unable to resolve the smallest heterogeneous structures observed in the fluidization of small particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.