Abstract

In this paper, the influences of q- and d-axis stator current on both the radial and tangential components of the airgap flux densities are first evaluated. Using a Maxwell stress tensor approach, the fields are then used to evaluate both the radial and tangential component of force density created in the airgap of the machine. From this perspective several interesting observations are made. First, it is shown that the d-axis current has zero influence on the average tangential force (torque), as predicted using traditional analysis, but it has a significant influence on the average radial component of force. Second, it is shown that the q-axis current contributes to both the average radial and average tangential components of force. Interestingly, it is also shown that under standard operating conditions, the average radial force far exceeds that of the average tangential component of force. Therefore, one can conclude that the magnetic fields established create a significant component of force in a direction that cannot produce torque

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.