Abstract

An idealized planetary flat-bottom geostrophic ice–ocean model is constructed with boundaries at latitudes 5° and 65° N and longitudes 50° W and 10° E in order to approximate the North Atlantic. The model is driven by fixed zonally averaged wind, surface air temperatures and surface ocean salinity. A dynamic thermodynamic sea-ice model is coupled to the ocean model. Only the thermodynamic insulating effects of the sea ice are considered, and no salt fluxes due to melting and freezing are included. Four equilibrium simulations of about 5000 years each are performed: two with interactive sea ice with and without ice dynamics, and two control simulations with either a fixed or no ice cover. In the two simulations including interactive sea ice, characteristic oscillations in the ice thickness and ocean temperature are found to occur. The oscillations are smaller when sea-ice dynamics are included. The dominant oscillation occurs at about a 5 year period, with the key feature being that the presence of sea ice tends to insulate the ocean and hence allows an oceanic warming. This warming in turn eventually causes a melt-back of the ice and a subsequent cool-down of the ocean. Oscillations at longer periods of about 20 years in the thermohaline circulation are also observed. These longer-period oscillations are particularly pronounced in the northward surface water transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.